Geodesic flows on semidirect-product Lie groups: geometry of singular measure-valued solutions
نویسندگان
چکیده
The EPDiff equation (or dispersionless Camassa-Holm equation in 1D) is a well known example of geodesic motion on the Diff group of smooth invertible maps (diffeomorphisms). Its recent two-component extension governs geodesic motion on the semidirect product Diff sF , where F denotes the space of scalar functions. This paper generalizes the second construction to consider geodesic motion on Diff s g, where g denotes the space of scalar functions that take values on a certain Lie algebra (for example, g = F ⊗ so(3)). Measure-valued deltalike solutions are shown to be momentum maps possessing a dual pair structure, thereby extending previous results for the EPDiff equation. The collective Hamiltonians are shown to fit into the Kaluza-Klein theory of particles in a Yang-Mills field and these formulations are shown to apply also at the continuum PDE level. In the continuum description, the Kaluza-Klein approach produces the Kelvin circulation theorem.
منابع مشابه
Euler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کاملGeometry and integrability of Euler–Poincaré–Suslov equations
We consider nonholonomic geodesic flows of left-invariant metrics and left-invariant nonintegrable distributions on compact connected Lie groups. The equations of geodesic flows are reduced to the Euler–Poincaré–Suslov equations on the corresponding Lie algebras. The Poisson and symplectic structures give raise to various algebraic constructions of the integrable Hamiltonian systems. On the oth...
متن کاملIntegrable geodesic flows of non-holonomic metrics
In the present article we show how to produce new examples of integrable dynamical systems of differential geometry origin. This is based on a construction of a canonical Hamiltonian structure for the geodesic flows of Carnot–Carathéodory metrics ([7, 17]) via the Pontryagin maximum principle. This Hamiltonian structure is achieved by introducing Lagrange multipliers bundles being the phase spa...
متن کامل4 M ay 2 00 7 Vlasov moments , integrable systems and singular solutions
The Vlasov equation for the collisionless evolution of the single-particle probability distribution function (PDF) is a well-known Lie-Poisson Hamiltonian system. Remarkably, the operation of taking the moments of the Vlasov PDF preserves the Lie-Poisson structure. The individual particle motions correspond to singular solutions of the Vlasov equation. The paper focuses on singular solutions of...
متن کاملEquivariant Cohomology in Algebraic Geometry Lecture Fourteen: General Lie Groups
for nonnegative integers nβα. Each root β corresponds to a unipotent subgroup Uβ of G, whose Lie algebra is gβ. There is an isomorphism of the additive Lie groupGa ∼= C with Uβ; this is T -equivariant, with multiplication by β(t) on C corresponding to conjugation by t on Uβ (u 7→ tut −1). The product of the groups Uβ for β ∈ R+ forms a unipotent group U , isomorphic to C , with N = #R+, and B =...
متن کامل